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Abstract

Two improvements to practical implementation of a solution to the two-dimensional inverse heat conduction prob-
lem are presented. The first concept is useful for experimental data with strong or irregular fluctuations in time. The
second procedure improves the spatial resolution for problems where the source of the surface heat flux distribution
is moving along the surface. The method is tested against analytical solutions and data from quench cooling experi-
ments. Both procedures are found to enhance the quality of the inverse solution results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Explicit analytical solutions [1–7] for inverse heat
conduction problems (IHCP) have an advantage over
many other methods in that solutions can be obtained
quickly without iteration. They are most useful in cases
where the geometry is simple, which often occurs in fun-
damental experimental investigations relating to heat
transfer where for practical reasons the temperature sen-
sors cannot be placed directly on the surface. In boiling
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heat transfer research [8,9] the surface morphology has
a direct influence on the phenomenon of interest mak-
ing inverse solutions extremely useful. Other important
applications for IHCP solutions include controlled cool-
ing of electronic components [10], estimation of thermal
deformation in machine tools during operation [11] and
determination of conditions at the interface between the
mold and metal during metal casting [12].

Recently Monde et al. [1–4] successfully demon-
strated a new analytical procedure for predicting surface
temperature and heat flux based on temperature mea-
surements within the solid. The novelty of their work
was the use of a polynomial series in the half power of
time to approximate the measured data. In implement-
ing the method to experimental data we have found that
a number of practical issues can arise that influence the
quality of the final solution. In this article we present
some innovations relating to how to apply the method
ed.
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Nomenclature

a thermal diffusivity
Cj,k coefficient defined by Eq. (A.1)
Fj(t) coefficient of jth eigenfunction as a function

of time
J0( ) zero order Bessel function of the first kind
l wavelength of cosine function for Eq. (13)
mj jth eigenvalue
mjcut �cut-off� eigenvalue for Eq. (11)
Nj number of eigenvalues minus 1
Nk number of terms in approximating poly-

nomial minus 1
Pj,k coefficient of function to approximate mea-

sured temperature
q0 magnitude of oscillating heat flux boundary

condition
r radial coordinate
R radius of domain
s Laplace domain variable
t time
t* shifted zero time point

ti time for the ith measured data point of the
experiment

tni time at which the last data point was mea-
sured in the experiment

Dt time period of oscillation (=2p/x)
T temperature
T0 temperature at time zero
u variable for integration of Eq. (12)
x Cartesian coordinate along surface
X width of domain for Cartesian coordinate

case
z axial coordinate or depth from surface

Greek symbols

h temperature change from initial (T � T0)
k thermal conductivity
/ interpolation angle
x time frequency of oscillating boundary con-

dition

R
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to experimental data better. The techniques introduced
are relevant to other inverse solution procedures and
not only to the Monde method.
z

surface sensor positions
r

z1
z2

Fig. 1. Geometry of two-dimensional inverse heat conduction
problem.
2. Overview of the Monde method

The aim of the present IHCP is to determine the
surface temperature and heat flux distribution based
on the readings of the temperature sensors at the posi-
tions shown in Fig. 1. Eq. (1) gives the unsteady heat
conduction relation for cylindrical coordinates and the
initial and boundary conditions are expressed in Eqs.
(2a)–(2d).
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In Eqs. (2c) and (2d), F ð1Þ
j ðtÞ and F ð2Þ

j ðtÞ are polynomial
functions of the half power of time with coefficients se-
lected such that these equations approximate the mea-
sured temperature/time distribution at depths z1 and
z2. The eigenvalue, mj, is the jth positive root of
J1(mj) = 0. Eq. (3) gives an example of the half-power
polynomial function for the first depth in Fig. 1.

F ð1Þ
j ðtÞ ¼

XNk

k¼0

P ð1Þ
j;k t

k=2=Cð1þ k=2Þ ð3Þ

The gamma function, C( ), is included in the denomina-
tor of Eq. (3) to make the form of the transformation to
Laplace space a little more convenient. It should be
noted here that the original work by Monde et al. [1] in-
cluded a time lag in the half-power polynomial, which is
not present in Eq. (3). The time lag can improve the re-
sult near time equals zero but for clarity of the discus-
sion it is omitted in the present overview. It becomes
redundant at larger times if the procedure suggested
below in Section 3 is employed.

By substituting h = T � T0 and taking Laplace trans-
forms, Eqs. (1) and (2) can be solved in Laplace space to
give Eq. (4). In this equation the over-bar represents the
Laplace transformed version of the variable or function.
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The Laplace transform of Eq. (3) results in Eq. (5).
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If we neglect all singularities except at s = 0 we can re-
place the fractions involving hyperbolic sine functions
by power series expansions about s = 0 to obtain Eq.
(6) (see Appendix A).
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Multiplying �F ð1Þ
j ðsÞ by the power series expansion and

retaining only terms that have s in the denominator,
the temperature distribution in s-space (near s = 0) takes
on the form given by Eq. (7).
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The inverse Laplace transform of Eq. (7) can be found
from tables of Laplace transforms [13] to give the sur-
face temperature distribution as a function of time as
in Eq. (8).
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The surface heat flux distribution can be determined by
differentiating Eq. (4) with respect to z and then pro-
ceeding in a similar manner. Further details of the above
procedure can be found in Appendix A and in Refs. [1–
4]. It is worth noting that to change Eq. (8) to Cartesian
coordinates, the only alterations necessary are to replace
J0(mjr/R) with cos(mjx/X) and set mj equal to j · p.
3. Application to large data sets with irregular time

fluctuations

When the data has many irregular fluctuations in
time it becomes impossible to use a polynomial with less
than eight terms to approximate the whole range of the
data accurately. Adding more terms to the polynomial
does not solve the problem since numerical errors are
introduced by the appearance of large positive and neg-
ative coefficients for the high-order terms. Previously, to
overcome this problem, Monde divided the data into
time partitions and then applied the half-polynomial ser-
ies to the data within each partition separately [1]. By
careful selection of the size, start and end position of
each partition, the experimental data could be approxi-
mated well and accurate results could be obtained by
the inverse solution. However, we have found that when
processing many data sets it can become tedious to select
appropriate positions for the partitions such that numer-
ical overshoots in the solution do not appear near the
start and end of the partitions. Moreover, for two-
dimensional data, sudden changes in the cooling curves
may not occur at exactly the same time for each radial
position. This can introduce some ambiguity in a proce-
dure to systematically select the start and end of each
partition. For these reasons we have devised an alterna-
tive procedure as follows.

With unsteady heat conduction problems there is a
general tendency for the solid temperature distribution
to �forget� the long-term history. In practice this means
that it is not necessary to use all of the data to evaluate
the temperature distribution at any given time, t. For the
present study, at any given time, t, we use a small win-
dow of the data as illustrated in Fig. 2. As indicated in
the figure, the minimum size for the window relates to
the Fourier number based on the depth of the second
thermocouple.

In a one-dimensional analysis it is safe to assume that
the temperature distribution was uniform at a time t*

where the Fourier number, a(t � t*)/(z2)
2 > 0.7. The

Fourier number of 0.7 results in a maximum error of less
than 0.1% of the non-uniformity, MAX(jT � Tavj), in
the temperature distribution at time t*. This arises be-
cause the transient factor in the leading term of solutions
for the finite slab with controlled temperature bound-
aries is generally of the form exp(�p2at/L2) where L is
the thickness of the slab [13]. In other words, after a
short period of time the factor, exp(�p2at/L2) tends to
become zero, the initial temperature distribution in the
slab is �forgotten� and the present distribution is the
result of only the recent history of the temperature on
the boundaries. Thus it is not necessary to include the
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entire history from the experimental data so long as
the boundary temperatures are approximated well
and enough past information is included. For two-
dimensional analysis it can be shown that in a similar
manner, the minimum required Fourier number is of
the order of 0.7 for 0.1% accuracy and 1.6 for 0.0001%
accuracy.

Using this reasoning we can apply the equations in
Section 2 for any time, t, by shifting the zero time posi-
tion so that it is always at t* where a(t � t*)/(z2)

2 is suf-
ficiently large to justify neglecting the non-uniformity in
the distribution at time t*. For a direct solution it should
be necessary to include data in the range from t* to t

only. For inverse solutions, however, it may be meaning-
ful also to include some future data beyond time t in the
curve-fit. The amount of future data should correspond
to at least the time required for a sudden change in the
surface temperature to be detected by the sensors at
the first depth. In the present study, the experimental
data used to calculate the surface temperature and heat
flux at time t is all data that falls in the range from
t � 1.6(z2)

2/a to t + 0.8(z2)
2/a. This is illustrated in

Fig. 2 for a copper test piece. The values, 1.6 and 0.8,
for the Fourier numbers were selected since they satisfy
the above-mentioned criteria. Also, some numerical
experiments were performed to verify that this time
range was not too large for the authors� experimental
temperature measurements to be well approximated by
a half-polynomial series. Thus in applying Eq. (8) to cal-
culate the surface temperature, t is replaced by t � t* and
each point in time is calculated separately by fitting Eq.
(3) to a different �window� of the original data. This is
more computationally expensive than the time partition
approach but it results in a consistent treatment that re-
quires no special procedure to determine the position of
the partitions.
4. Experimental data with varying thermal properties

An additional benefit becomes possible as a result of
applying the solution to separate windows of the data.
Fundamentally, the inverse solution assumes that the
thermal properties of the solid are constant. However,
for some applications thermal properties may vary sig-
nificantly with temperature. Since each window of data
is considered independently we only need to assume that
the properties are constant for the duration of each win-
dow. Therefore if desired, a �best estimate� of thermal
properties can be obtained as a function of an average
of the measured temperatures within the small time win-
dow of the data rather than for the whole data range.
However, the effect of large spatial variations in thermo-
dynamic properties cannot be accounted for in the pres-
ent analytical solution.
5. Interpolation strategy for improving spatial

resolution

Ideally, many temperature sensors should be used so
that the number of eigenvalues, (Nj + 1), in Eq. (8) can
correspond exactly to the number of temperature sen-
sors at each depth and sharp spatial resolution can be
achieved. However, for practical reasons there is a limit
to the number of thermocouples that can be placed in
the solid. Thus to obtain good resolution, it becomes
necessary to use an interpolation procedure so that not
only the value of the temperature at the measuring
points is considered but also the spatial and temporal
trends of the data. This extra information extracted
from the data allows the number of eigenvalues,
(Nj + 1), to be increased beyond the number of sensors.
Practical implementation of this concept can be realized
by interpolation of extra points between the measured
positions and treating the interpolated data as ad-
ditional �measurement points�. Thus using only eight
sensors and a cubic spline interpolation procedure it be-
comes possible to construct a 30-eigenvalue series [4].

Simply fixing the time and interpolating extra points
in space was successfully employed by Hammad et al. [4]
to reproduce a reasonably sharp step heat flux distribu-
tion based on computer generated temperature data for
16 points within the solid. However, in the case of a
moving spike in the heat flux distribution such as may
occur in quenching experiments, numerical peaks in
the predicted heat flux distribution sometimes appear
immediately above the temperature sensors. The numer-
ical peaks can be removed by extra smoothing of the
experimental data but this tends to lead to a large under-
estimate of the magnitude of the peak heat flux.

A better procedure is illustrated in Fig. 3 where for
example, the temperature is being interpolated to the
point �A�. The aim is to include not only the spatial trend
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but also the temporal trend in the interpolation. The
angle / is chosen so that tan(/) corresponds approxi-
mately to the prevailing direction of the temperature
contours at time, ti, which we interpret as the spatial
averaged temperature/time gradient divided by the spa-
tial averaged radial temperature gradient. Numerically
tan(/) is calculated using finite differences as given in
Eq. (9).
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The physical reasoning behind using the interpolation
procedure shown in Fig. 1 is that if the peak flux is mov-
ing in the positive radial direction, as in the case of a
moving wetting front, then we may expect the tempera-
ture contours on a space/time plot also to move approx-
imately in the same direction. We have found that
interpolating parallel to the expected contour direction
reduces the likelihood of non-physical peaks in surface
heat flux appearing above the sensor locations.

Some numerical constraint is needed for the mini-
mum value of tan(/) in Eq. (9) since very small angles
can lead to numerical errors. In our computer program
the minimum angle is controlled as given in Eq. (10).
For this equation, tan(/min) is a number smaller than
the minimum observed wetting front velocity.

tanð/iÞ ¼ MAXðtanð/iÞ; tanð/minÞÞ ð10Þ

Having determined the slope of the interpolation line
from Eqs. (9) and (10) for every time, ti, near-neighbor
averaging is used to smooth the slope so that noise in
the data does not cause the slope to change dramatically
each time step. Finally, for the example shown in Fig. 3,
data is first interpolated to the points, a1, a2, a3, etc. and
then cubic splines are used to make the interpolation to
the point �A�.
6. Damping the coefficients of high frequency

eigenfunctions

The coefficients of the higher frequency eigen-
functions in Eq. (3) are generally less accurate than the
coefficients of the low frequency modes due to the
uncertainties introduced by the interpolation procedure.
Furthermore, it is possible that the interpolation will
introduce some high frequency noise, which can ruin
the quality of the inverse solution. For this reason
damping of the higher frequency components is war-
ranted. Eq. (11) gives the second-order Butterworth type
smoother used in the present work applied to Eq. (3) at
the measurement time ti.

F ð1Þ
j ðtiÞjsmooth ¼ F ð1Þ

j ðtiÞjraw=ð1þ ðmj=mjcutÞ4Þ ð11Þ

After some numerical experimentation, the �cut-off�
eigenvalue, mjcut was taken to correspond to the number
of thermocouples at each depth plus 3 (viz. mjcut = m10

for eight thermocouples). In this way, the high frequency
modes due to the interpolated data are strongly damped
while the lower frequency data is gently smoothed.
7. Results

7.1. Effect of neglecting long-term history

The first test case is a one-dimensional inverse heat
conduction problem where the exact solution is a trian-
gle-wave function for heat flux at the surface. Tempera-
ture/time histories for two points, one at 2 mm below
the surface and the second at a depth of 5 mm were gen-
erated using superposition of the one-dimensional ana-
lytical solutions for a ramp heat flux and a constant
heat flux on the surface of a semi-infinite solid. The solid
was taken to have the properties of copper and the peak
heat flux of 1 MW/m2 was chosen to correspond to the
order of magnitude that appears in typical quench-cool-
ing experiments using water. The triangle-wave function
was selected since it is difficult to approximate the whole
range of data with a polynomial series.

Fig. 4 gives the results of applying the present inverse
solution procedure to the above problem. If the whole
range of the data is used to determine the coefficients
for Eq. (3) then the internal temperatures are not well
approximated by the polynomial containing eight terms
and a rather poor prediction of the heat flux results as is
shown by the black symbols in Fig. 4a. If however, the
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heat flux is calculated using the present procedure, with
a local window of the data, the triangle-wave function
is well reproduced. Small overshoots appear near the
discontinuities since the approximating function cannot
perfectly resolve the sudden change in temperature
shortly after the step change in heat flux. The predicted
surface temperature is in excellent agreement with the
analytical solution as shown in Fig. 4b.

7.2. Time resolution limit

Because of the thermal inertia of the solid, high fre-
quency modes are strongly damped placing an upper
limit to the frequency of the fluctuations that can be de-
tected by sensors within the solid. This is illustrated in
Eq. (12), which is the exact one-dimensional solution
[13] for temperature within a semi-infinite solid with a
sine wave heat flux boundary condition, q0 sin(xt), and
an initial temperature of T0.
T � T 0 ¼
q0
k

ffiffiffiffi
a
x

r
e�z

ffiffiffiffiffiffiffi
x=2a

p
sin xt � z

ffiffiffiffiffiffiffiffiffiffiffi
x=2a

p
� p=4

� �

þ 2q0ax
pk

Z 1

0

cosðuzÞ
x2 þ a2u4

e�au2 tdu ð12Þ
The first term on the right of Eq. (12) is the steady
periodic part of the solution and the second term is a
transient. From the form of the coefficient of the sine
function in Eq. (12) it is clear that the magnitude of
the oscillation diminishes quickly with depth into the
solid and more so if the frequency is larger.

Eq. (12) provides a useful test case for the present
procedure since the time resolution limit will depend
also on the size of the window of data used for the poly-
nomial fit in relation to the period of the oscillation (2p/
x). The term involving the integral in Eq. (12) generally
converges quickly and can be evaluated numerically to
an arbitrary precision. Fig. 5 shows present predictions
of the surface heat flux based on temperatures calculated
with Eq. (12) at 2 mm and 5 mm beneath the surface of a
copper block. The agreement between the exact result
and the prediction is excellent for the lower frequency
case of one cycle per second (x = 2p radians/s). The
accuracy of the predictions diminishes as the frequency
increases.

From Fig. 5 it is apparent that the time resolution for
the present calculation is limited to an oscillation with a
time period, Dt = 2p/x, of about 0.3 s. In terms of the
Fourier number this is aDt=z22 ffi 1:3. It is worth noting
that this number is smaller than the window of data
(1:5aðt � t�Þ=z22 ¼ 2:4Þ used to calculate the surface heat
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flux in the inverse solution. We have found that reducing
the size of the data window improves the time resolution
for the case in Fig. 5. However, this is at the risk of
introducing some error by neglecting some of the more
recent thermal history for the solid. So in order to
resolve data with significant higher frequency time com-
ponents it may be necessary to reach a compromise
between two factors. The first is the limitation of the
truncated polynomial series for mapping strong fluctua-
tions and the second is inaccuracy due to over-restric-
tion of the amount of data used in the calculation.
Nevertheless, it is important to keep in mind that Eq.
(12) shows that the amplitude of the oscillation that
would be detected by the sensor 2 mm beneath the cop-
per surface for a frequency of 5 s�1 is only 2.2 K and at
5 mm it is less than 1 K for the present example. Also we
do not want the polynomial to follow higher frequency
noise in the data, which is one of the advantages of using
a least-squares polynomial fit.

In summary, the depth of the sensors beneath the
surface, the magnitude of the heat flux, the accuracy
of the sensor and the size of the window of data used
for the inverse solution influence the time resolution
limit.

7.3. Effect of spatial interpolation procedure

To illustrate the improvement to predictions resulting
from the spatial interpolation procedure and the appli-
cability of the method to experimental data we have ap-
plied the method to two experimental cases and one set
of computer-generated data.

The first example using two-dimensional experimen-
tal data is from Hammad et al. [8] for jet impinge-
ment quench-cooling. Fig. 6 compares two different
procedures for interpolating additional points between
the measured data. In the experiment, temperatures were
measured at two depths with eight thermocouples at
each depth. For the present calculation 28 eigenvalues
are used and the half-power polynomial series has eight
terms. Fig. 6a gives the calculated surface heat flux using
the procedure outlined in Section 3 above. Fig. 6b
gives the results obtained by fixing time and interpolat-
ing in space. This is equivalent to setting / to p/2 in
Fig. 3. Clearly in Fig. 6b, localized peaks appear along
the line of maximum heat flux. The peaks appear above
the locations of the temperature sensors. This problem is
overcome using the present procedure as is shown in
Fig. 6a.

The second example of application of the procedure
to experimental data is shown in Fig. 7. This case is
for a falling film of liquid water onto a steel block
100 mm long and 50 mm deep. Thermocouples are
placed at 2 mm and 5 mm beneath the surface and are
spaced approximately 10 mm apart. This case differs
from Fig. 6 in that Cartesian coordinates are used, the
material is steel and the spacing between thermocouples
is greater. Fig. 7a shows the surface heat flux distribu-
tion estimated using the present interpolation procedure,
while Fig. 7b shows results from interpolating by fixing
the time. Again non-physical peaks appear above the
thermocouple locations in Fig. 7b. A notable improve-
ment to this problem is again achieved by the present
procedure as illustrated in Fig. 7a.

To verify the accuracy of the method, we have also
considered computer-generated data for a moving annu-
lar step source of surface heat flux. The width of the step
is set a little larger than the spacing of the temperature
sensors and the step moves at a constant velocity in
the radial direction. Fig. 8 gives the calculated surface
heat flux distribution for this problem using the present
method and fixed time interpolation. The effect is the
same as is shown in Figs. 6 and 7 verifying that the peaks
in Figs. 6 and 7 are certainly due to the interpolation
procedure and not some physical phenomenon from
the experiment.
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7.4. Space resolution limit

It may be noticed in Fig. 8 that the peak heat flux of
1 MW/m2 is reasonably well predicted by the present
procedure. However, it is generally found for this kind
of problem that if the width of the step is smaller than
the thermocouple spacing the peak heat flux is under-pre-
dicted. Thus we cannot expect that the present method
will give a better spatial resolution of heat flux than the
physical spacing of the temperature sensors. However,
the spatial resolution is certainly improved from that ob-
tained using no interpolation and the same number of
eigenvalues as measurement positions. Fig. 9 gives calcu-
lations of the instantaneous heat flux profile at a time of
10 s after the step moved from the center for three differ-
ent step widths. Fig. 9a shows the cases where only eight
eigenvalues were used, while Fig. 9b shows the present
procedure with 28 eigenvalues. In all cases for Fig. 9,
the number of sensors was eight. Generally the estimate
of the peak heat flux is closer to the true value in
Fig. 9b than in Fig. 9a. Concerning the shape of the dis-
tribution in Fig. 9, it is worth noting that the space reso-
lution not only influences the magnitude of the peak heat
flux but also the calculated shape. High frequency com-
ponents contributing to the sharp profile of the exact
heat flux distribution on the surface cannot be resolved
properly. Thus the inverse solution does not follow the
rectangular shape for heat flux in Figs. 8 and 9.

Fig. 10 compares the estimated surface temperature
distributions with the exact values corresponding to
the conditions and procedure for Fig. 9b. Again the pre-
dictions are better for the steps that are wider than the
spacing of the sensors. Generally the inverse solution
predictions for surface temperature appear better than
the corresponding predictions for heat flux. This is a
consequence of the fact that the higher frequency eigen-
functions make a smaller contribution to temperature
than to heat flux.

From a numerical point of view we might expect that
the spatial resolution can be improved simply by adding
more sensors. This is illustrated in Fig. 11 where 15 sen-
sors have been employed at each depth. In this case the
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resolution is much better than that shown in Fig. 9b.
However, it should be noted that the sensor spacing is
not the only factor to be considered in determining the
spatial resolution limit. Even if the sensor is infinitely
small, the spatial resolution at the surface will be limited
by experimental noise, the accuracy of the sensor and its
depth beneath the surface.

Consider a simple steady-state case of a semi-infinite
two-dimensional solid with a steady heat flux distribu-
tion in the shape of a cosine wave at the surface. Eq.
(13) defines this problem.

o2T
ox2

þ o2T
oz2

¼ 0 ð0 6 z < 1; �1 < x < 1Þ ð13aÞ

� k
oT
oz

jz¼0 ¼ q0 cosð2px=lÞ ðz ¼ 0; �1 < x < 1Þ

ð13bÞ
T jz!1 ¼ T1 ð13cÞ
In Eq. (13), T is the temperature at any point in the
solid, q0 is the amplitude of the cosine-wave heat flux
distribution at the surface, l is the wavelength, x is the
spatial coordinate along the surface and z is the depth
beneath the surface. The steady-state case is a useful
illustration for considering space resolution since time
resolution issues are not involved. In addition, the
choice of a cosine function for the boundary condition
(Eq. (13b)) is helpful since the eigenfunctions for the
solution to the IHCP in rectangular coordinates are also
cosine functions. The analytical solution to Eq. (13) is
given in Eq. (14).

T � T1 ¼ q0l
2kp

e�2pz=l cos
2px
l

� �
ð14Þ
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The amplitude of the resulting spatial cosine wave
fluctuation in temperature will diminish with depth
in the solid as indicated by the coefficient of the
cosine function in Eq. (14). The effect will be stronger
if the wavelength, l, is smaller. This implies that spatial
modes beyond a certain frequency will become un-
detectable no matter how closely real sensors are placed
in the x direction for a given depth, z, beneath the
surface.

For an example, consider a practical case where the
accuracy of the sensor is 0.1 K, the material is copper
and the first thermocouple is 2.0 mm beneath the sur-
face. Eq. (14) tells us a surface heat flux in the form of
a cosine function with a wavelength of around 4.4 mm
and amplitude of 1 MW/m2 will not produce a detect-
able change in temperature at a depth greater than
2.0 mm from the surface. In other words if there is no
restriction on sensor spacing, we may expect that the
space resolution limit will be defined by a minimum
detectable wavelength for the eigenfunction which is
estimated to be of the order of 4.4 mm for the present
example. Using eigenfunctions with shorter wavelengths
than this in the inverse solution may not be meaningful.
Finally, it should be noted that unlike the cosine func-
tion, Bessel functions do not have a fixed �wavelength�.
However, the peaks of J0(x) do appear approximately at
an interval of 2p and the orders of magnitude should
be the same in both cylindrical and Cartesian
coordinates.
8. Conclusions and closing

Two innovations for application of the two-dimen-
sional Monde method to experimental data were
presented. The first represented an improvement for
applying the procedure to data with strong or irregular
fluctuations in time. The second is most useful for cir-
cumstances where the source of the surface heat flux is
moving in the spatial direction. This circumstance can
occur in quenching experiments with a moving wetting
front. It is also demonstrated that the spatial resolution
for the surface heat flux estimate is limited by the sensor
spacing, the depth beneath the surface and the accuracy
of the sensor.

Finally, the authors are pleased to make available
openly the software developed for implementing the
present inverse solution. Interested readers should con-
tact the Monde laboratory at Saga University.
Appendix A. Details of coefficients for Eq. (8)

It is worthwhile to briefly describe a procedure for
evaluating the coefficients in the inverse solution.
A.1. Expansion of hyperbolic sine functions

The mathematical step between Eqs. (4) and (6) is
perhaps the most tedious part of the present procedure.
We seek to find coefficients, Cð1Þ

j;k such that Eq. (A.1) is
accurately approximated in the vicinity of s = 0.

X1
k¼0

Cð1Þ
j;k s

k ¼ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=aþ m2

j=R
2

q
ðz2 � zÞ

� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=aþ m2

j=R
2

q
ðz2 � z1Þ

�� �
ðA:1Þ

Using a Taylor series expansion it is possible to directly
evaluate the coefficients in Eq. (A.1), however, the differ-
entiation becomes very awkward as k becomes large. A
slightly simpler approach is to expand both the numera-
tor and denominator as separate series about s = 0. This
is given in Eq. (A.2).

X1
k¼0

Cð1Þ
j;k s

k ¼
X1
p¼0

apsp
X1
q¼0

bqsq
,

ðA:2Þ

where

X1
p¼0

apsp ¼ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=aþ m2

j=R
2

q
ðz2 � zÞ

� �
ðA:3Þ

X1
q¼0

bqsq ¼ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=aþ m2

j=R
2

q
ðz2 � z1Þ

� �
ðA:4Þ

Using Taylor series expansions ap and bq can be evalu-
ated without great difficulty. For example, for Eq.
(A.3) we have

ap ¼
1

p!
dp

dsp
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=aþ m2

j=R
2

q
ðz2 � zÞ

� �� �� �����
s¼0

ðA:5Þ

Noting that at the solid surface z = 0 and evaluating
Eq. (A.5) where s = 0 gives us for example

a0 ¼ sinhðz2mj=RÞ

a1 ¼
z2
2a

R
mj

coshðz2mj=RÞ ðA:6Þ

a2 ¼
z22R

2

8a2m2
j
sinhðz2mj=RÞ �

z2R3

8a2m3
j
coshðz2mj=RÞ

In general ap is found to be of the form given by Eq.
(A.7).

ap ¼
1

app!

X2p�1

i¼0

bp;iðR=mjÞi sinhðz2mj=RÞ
 

þ
X2p�1

i¼0

Dp;iðR=mjÞi coshðz2mj=RÞ
!

ðA:7Þ

The coefficients, bp,i and Dp,i can be determined in a
computer program by the following formulae.
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bp;i ¼ ð1� i=2Þbp�1;i�2 þ ðz2=2ÞDp�1;i�1 ðA:8aÞ
Dp;i ¼ ð1� i=2ÞDp�1;i�2 þ ðz2=2Þbp�1;i�1 ðA:8bÞ

What remains is to determine Cð1Þ
j;k as a function of ap and

bq. This can be done by multiplying both sides of Eq.
(A.2) by the series involving bq and then equating coef-
ficients. This results in the following recursive formulae:

Cj;0 ¼ a0=b0 ðA:9aÞ

Cj;k ¼
1

b0
ak �

Xk�1

q¼0

Cj;qbk�q

 !
ðA:9bÞ

It should be mentioned that for the special case where
mj = 0, appropriate coefficients for Eq. (A.2) can be
determined simply by noting that

sinhðxÞ=x ¼ 1þ x2=3!þ x4=5!þ x6=7!þ � � � ðA:10Þ
A.2. Final evaluation of coefficients, Gj,k, for Eq. (8)

The step between Eqs. (6) and (7) is not a major chal-
lenge. Multiplying the two series on the right hand side
of Eq. (A.11) together and then equating the coefficients
determines Gð12Þ

j;k .

XNk

k¼�1

Gð12Þ
j;k =sðkþ2Þ=2 ¼

XNk

p¼0

P ð1Þ
j;p =s

ðpþ2Þ=2

 ! XðNkþ2Þ=2

q¼0

Cð2Þ
j;q s

q

 !

ðA:11Þ
Notice in Eq. (A.11) that the infinite series has been
truncated to include only cases where s appears in the
denominator. In a computer program, evaluation of
Gð12Þ

j;k can be done quite simply using the following
algorithm denoted as Eq. (A.12).

INITIALIZE Gð12Þ
j;k ¼ 0 ðk ¼ �1;NkÞ

LOOP ðp ¼ 0;NkÞðq ¼ 0;NkÞ
IF ðq� ðp þ 2Þ=2 < 0Þ THEN

Gð12Þ
j;p�2q ¼ Gð12Þ

j;p�2q þ P ð1Þ
j;p C

ð2Þ
j;q

ENDIF

ENDLOOP

ðA:12Þ
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